3.175 \(\int \frac{(a+a \sec (c+d x))^2}{\sqrt{\sec (c+d x)}} \, dx\)

Optimal. Leaf size=64 \[ \frac{4 a^2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{d}+\frac{2 a^2 \sin (c+d x) \sqrt{\sec (c+d x)}}{d} \]

[Out]

(4*a^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a^2*Sqrt[Sec[c + d*x]]*Sin[c +
d*x])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0736912, antiderivative size = 64, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {3788, 3771, 2641, 4043} \[ \frac{2 a^2 \sin (c+d x) \sqrt{\sec (c+d x)}}{d}+\frac{4 a^2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^2/Sqrt[Sec[c + d*x]],x]

[Out]

(4*a^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a^2*Sqrt[Sec[c + d*x]]*Sin[c +
d*x])/d

Rule 3788

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[(2*a*b)/
d, Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 4043

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e
 + f*x]*(b*Csc[e + f*x])^m)/(f*m), x] /; FreeQ[{b, e, f, A, C, m}, x] && EqQ[C*m + A*(m + 1), 0]

Rubi steps

\begin{align*} \int \frac{(a+a \sec (c+d x))^2}{\sqrt{\sec (c+d x)}} \, dx &=\left (2 a^2\right ) \int \sqrt{\sec (c+d x)} \, dx+\int \frac{a^2+a^2 \sec ^2(c+d x)}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{2 a^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+\left (2 a^2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{4 a^2 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{2 a^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{d}\\ \end{align*}

Mathematica [A]  time = 0.156184, size = 48, normalized size = 0.75 \[ \frac{2 a^2 \sqrt{\sec (c+d x)} \left (2 \sqrt{\cos (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )+\sin (c+d x)\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])^2/Sqrt[Sec[c + d*x]],x]

[Out]

(2*a^2*Sqrt[Sec[c + d*x]]*(2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + Sin[c + d*x]))/d

________________________________________________________________________________________

Maple [A]  time = 1.347, size = 104, normalized size = 1.6 \begin{align*} -4\,{\frac{{a}^{2} \left ({\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}- \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) \right ) }{\sin \left ( 1/2\,dx+c/2 \right ) \sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^2/sec(d*x+c)^(1/2),x)

[Out]

-4*a^2*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)-si
n(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^2/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{a^{2} \sec \left (d x + c\right )^{2} + 2 \, a^{2} \sec \left (d x + c\right ) + a^{2}}{\sqrt{\sec \left (d x + c\right )}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((a^2*sec(d*x + c)^2 + 2*a^2*sec(d*x + c) + a^2)/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a^{2} \left (\int \frac{1}{\sqrt{\sec{\left (c + d x \right )}}}\, dx + \int 2 \sqrt{\sec{\left (c + d x \right )}}\, dx + \int \sec ^{\frac{3}{2}}{\left (c + d x \right )}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**2/sec(d*x+c)**(1/2),x)

[Out]

a**2*(Integral(1/sqrt(sec(c + d*x)), x) + Integral(2*sqrt(sec(c + d*x)), x) + Integral(sec(c + d*x)**(3/2), x)
)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^2/sqrt(sec(d*x + c)), x)